総合併、総共通部分

word(c,c) … \(\bigcup\)  \(\bigcap\)  
def …【\(\bigcup {\sf X}\)】≃【\(\{ {\sf t} \mid \exists {\sf x} \in {\sf X} . {\sf t} \in {\sf x} \} \)
def …【\(\bigcap {\sf X}\)】≃【\(\{ {\sf t} \mid \forall {\sf x} \in {\sf X} . {\sf t} \in {\sf x} \} \)
\(\bigcap\emptyset\)\(\bigcap \emptyset = \text{Set}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

word(s,s) … \(\bigcup\)  \(\bigcap\)  
\(\bigcup.\)\(\bigcup X = \bigcup X\)
\(\bigcap.\)\(X \neq \emptyset \Longrightarrow \bigcap X = \bigcap X\)

\(\cup_1\)\(X = \bigcup \{ X \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(\cap_1\)\(X = \bigcap \{ X \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
これも / D. で行けるように拡張したい。補題 \(\{X\} \neq \emptyset \) が必要。
\(\cup_2\)\(X \cup Y = \bigcup \{ X , Y \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(\cap_2\)\(X \cap Y = \bigcap \{ X , Y \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
集合は1点集合により分割されます。
\(\bigcup_1\)\(X = \bigcup _{ x \in X } \{ x \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

自然数

word(,s) … \(0\)  
\({0.}\)\(0 = \emptyset\)
1以上の自然数 \({\tt n}\) に対し word(,s) … \({\tt n}\)
\({\tt n}.\)【\({\tt n} = \{0,1,\cdots,{\tt n}{-}1\}\)】

自然数の全体

word(,s) … \(\mathbb{M}\)  \(\mathbb{N}\)  
word(ss,s) … \(+\)  \(\cdot\)  
\(+1\)\(m \in \mathbb{M} \Longrightarrow m + 1 = m \cup \{ m \}\)
\(\cdot 1\)\(m \in \mathbb{M} \Longrightarrow m \cdot 1 = m\)
\(+換結\)\(+ \cdots \text{換結}\)
\(\cdot 換結\)\(\cdot \cdots \text{換結}\)
\(\mathbb{M}0\)\(0 \in \mathbb{M} , \forall n \in \mathbb{M} . n + 1 \in \mathbb{M}\)
\(\text{Ind}\)\(0 \in X , \forall x \in X . x + 1 \in X \Longrightarrow \mathbb{M} \subset X\)
\(\mathbb{M}0\)\(0 \in \mathbb{M} , \forall n \in \mathbb{M} . n + 1 \in \mathbb{M}\)
\(\mathbb{M}.\)\(\mathbb{M} = \bigcap \{ M \mid 0 \in M , \forall m \in M . m + 1 \in M \} \)

べき集合

word(s,s) … \(\wp\)  
\(\wp.\)\(\wp X = \{ A \mid A \subset X \} \)
\(\wp\emptyset\)\(\wp \emptyset = \{ \emptyset \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)