set,classの関係

word(ss,p) … \(\subset\) \(=\)
\(\subset.\)\(X \subset Y \Longleftrightarrow \forall x \in X . x \in Y \)】\(\)
\(=.\)\(X = Y \Longleftrightarrow \forall x \, ( x \in X \Leftrightarrow x \in Y )\)】\(\)
\({=}{.}{.}\)\(X = Y \Longleftrightarrow X \subset Y \subset X\)/\(\subset.\) /\(=.\) ◀ O

word(sc,p) … \(\subset\) \(=\)
def …【\({\sf X} \subset {\sf C}\)=\(\forall {\sf x} \in {\sf X} . {\sf x} \in {\sf C} \)
def …【\({\sf X} = {\sf C}\)=\(\forall {\sf x} \, ( {\sf x} \in {\sf X} \Leftrightarrow {\sf x} \in {\sf C} )\)
\(\text{SC}\)\(X = \{ x \mid x \in X \}\)】◀ O

word(cc,p) … \(\subset\) \(=\)
def …【\({\sf C} \subset {\sf D}\)=\(\forall {\sf x} \in {\sf C} . {\sf x} \in {\sf D} \)
def …【\({\sf C} = {\sf D}\)=\(\forall {\sf x} \, ( {\sf x} \in {\sf C} \Leftrightarrow {\sf x} \in {\sf D} )\)

宇宙、空

word(,c) … \(\mathbb{V}\)
def …【\(\mathbb{V}\)=\(\{ {\sf x} \mid \top \}\)
\(\mathbb{V}0\)\(x \in \mathbb{V}\)】◀ O
\(\mathbb{V}1\)\(X \subset \mathbb{V}\)】◀ O

宇宙は全て含んでいます!?

word(,s) … \(\emptyset\)
\(\emptyset.\)\(\emptyset = \{ x \mid \perp \}\)】\(\)
\(\emptyset0\)\(\neg ( x \in \emptyset )\)/\(\emptyset.\) ◀ O
\(\emptyset1\)\(\emptyset \subset X\)/\(\subset.\) /\(\emptyset.\) ◀ O
\(\emptyset{.}{.}\)\(x \ne \emptyset \Longleftrightarrow \exists y \, ( y \in x )\)】◀ \(=.\) \(\emptyset0\)

setになるclass

word(c,p) … \(\dot\exists\)
def …【\(\dot\exists {\sf C}\)=\(\exists {\sf x} ( {\sf x} = {\sf C} )\)

Russelのパラドクスが集合でないクラスの最初の例を与えます。
word(,c) … \(\mathbb{X}\)
def …【\(\mathbb{X}\)=\(\{ x \mid \neg ( x \in x ) \}\)
\(\text{NS0}\)\(\neg \dot\exists \mathbb{X}\)】◀ O

クラスの生成

abbr …【\(\{ {\sf T} \mid {\sf P} \}\)=\(\{ {\sf x} \mid {\sf x} = {\sf T} , {\sf P} \}\)
abbr …【\(\{ {\sf T} {\sf w} {\sf U} \mid {\sf P} \}\)=\(\{ {\sf T} \mid {\sf T} {\sf w} {\sf U} , {\sf P} \}\)

最後は未完

2setの和、積、差

word(ss,s) … \(\cup\) \(\cap\)
\(\cup.\)\(X \cup Y = \{ x \mid x \in X \mathbin{\rm o\!r} x \in Y \}\)】\(\)
\(\cap.\)\(X \cap Y = \{ x \mid x \in X \mathbin\& x \in Y \}\)】\(\)
\({\subset}\text{u}\)\(X \subset Y \Longleftrightarrow X \cup Y = Y\)/\(\subset.\) /\(=.\) /\(\cup.\) ◀ O
\({\subset}\text{a}\)\(X \subset Y \Longleftrightarrow X \cap Y = X\)/\(\subset.\) /\(=.\) /\(\cap.\) ◀ O
\(\setminus.\)\(X \mathop\setminus Y = \{ x \mid x \in X \mathbin\& \neg ( x \in Y ) \}\)】\(\)

classの総和、総積

word(c,c) … \(\bigcup\) \(\bigcap\)
def …【\(\bigcup {\sf C}\)=\(\{ {\sf x} \mid \exists {\sf y} \in {\sf C} . {\sf x} \in {\sf y} \}\)
def …【\(\bigcap {\sf C}\)=\(\{ {\sf x} \mid \forall {\sf y} \in {\sf C} . {\sf x} \in {\sf y} \}\)
word(s,s) … \(\bigcup\) \(\bigcap\)
\(\bigcup.\)\(\bigcup X = \bigcup _{ x \in X } x\)】\(\)
\(\bigcap.\)\(X \ne \emptyset \Longrightarrow \bigcap X = \bigcap _{ x \in X } x\)】\(\)

setとclassの共通部分

setとclassの共通部分は集合になります(分出公理)。が、word(sc,s)は作れません。
word(sc,c) … \(\cap\)
def …【\({\sf X} \cap {\sf C}\)=\(\{ {\sf x} \in {\sf X} \mid {\sf x} \in {\sf C} \}\)
無限個の公理が必要、なのが頭の痛い所です。
word(c,p) … \(\text{axs}\)
def …【\(\text{axs} ( {\sf C} )\)=\( ( {\sf X} \cap {\sf C} )\)
\(\text{NS1}\)\(\neg \dot\exists \mathbb{V}\)】◀ \(\text{axs} ( \mathbb{X} )\)

setの生成(外延記法)

1以上の自然数\({\tt n}\)に対し
word(sの\({\tt n}\)個並べ,s) … \(\text{set}{\tt n}\)

abbr … 【\(\{{\sf X}_1,\cdots,{\sf X_n}\}\)】=【\(\text{set}{\tt n} \, {\sf X}_1 \,\cdots \, {\sf X_n}\)

\(\text{set}{\tt n}.【】\)

\{とs{はtex表記が同じ【\(\{\)】です。
これで \(\{x\in\mathbb{R} \mid x^2=1\}=\{1,-1\}\) という記述の準備ができました。なお「方程式 \(x^2=1\) の実数解は \(x=\pm1\)」というダサい言い方はしません。

!のdefは【\(!{\sf xP}\)】=【\(\{{\sf x} \,|\, {\sf P}\}\subset\{{\sf x}\}\)】