対、直積

word(ss,s)! …【\(\langle {\sf X} , {\sf Y} \rangle\)
対の定義はされません。次のものは対の成分を取り出します。
word(s,s) … \(\triangleleft\)  \(\triangleright\)  
\({\triangleleft.}\)\(\triangleleft \langle x , y \rangle = x\)
\({\triangleright.}\)\(\triangleright \langle x , y \rangle = y\)
\(\text{%0}\)\(\langle x_{0} , y_{0} \rangle = \langle x_{1} , y_{1} \rangle \Longleftrightarrow x_{0} = x_{1} , y_{0} = y_{1}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

word(ss,s) … \(\times\)  
\({\times}.\) P% := #P%

P%を%_に

定義域、値域

word(s,s)F … \(\text{dom}\)  \(\text{im}\)  
\(\text{dom.}\)\(\text{dom} ( R ) = \{ x \mid \exists y \, \langle x , y \rangle \in R \} \)
\(\text{im.}\)\(\text{im} ( R ) = \{ y \mid \exists x \, \langle x , y \rangle \in R \} \)

定義域の制限や像は写像に対してよく使用されます。
word(ss,s)! …【\({\sf R} | _{ {\sf X} }\)
\(|.\)\(R | _{ X } = \{ \langle x , y \rangle \in R \mid x \in X \}\)
word(ss,s)! …【\({\sf R} ( {\sf A} )\)
\(\text{Pap}.\)\(R ( A ) = \{ y \mid \exists a \in A . \langle a , y \rangle \in R \} \)

成分の入れ替え

word(s,s) … \(^\leftrightarrow\)  
\(\text{sw.}\)\(\langle x , y \rangle ^\leftrightarrow = \langle y , x \rangle\)
\(\text{sw}巾\)\(\langle x , y \rangle ^\leftrightarrow \, \! ^\leftrightarrow = \langle x , y \rangle\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

word(s,s) … \(^\leftrightarrow\)  
\(\text{sw_.}\)\(^\leftrightarrow =\!\!= {^\leftrightarrow}\)
\(\text{sw_0}\)\(R \subset X \times Y \Longrightarrow R ^\leftrightarrow \subset Y \times X\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(\text{sw_}巾\)\(R \in \text{Rel} \Longrightarrow R ^\leftrightarrow \, \! ^\leftrightarrow = R\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

Pswをsw_に

合成

word(ss,s) … \(\circ\)  
\({\circ}.\)\(S \circ R = \{ \langle x , z \rangle \mid \exists y \, ( \langle x , y \rangle \in R , \langle y , z \rangle \in S ) \}\)
\({\circ}\text{Rel}\)\(R \subset X \times Y , S \subset Y \times Z \Longrightarrow S \circ R \subset X \times Z\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}結 \)\(R , S , T \in \text{Rel} \Longrightarrow ( T \circ S ) \circ R = T \circ ( S \circ R )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}逆\)\(R , S \in \text{Rel} \Longrightarrow ( R \circ S ) ^\leftrightarrow = S ^\leftrightarrow \circ R ^\leftrightarrow\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}\text{F}\)\(( \wp ( \widehat{\times} X ) , \circ ) \, {:}\, \underline{2} \text{A}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

代入

word(s,s) … \(\text{dom!}\)  
\(\text{dom!}.\)\(\text{dom!} ( f ) = \{ x \mid \exists! y \, \langle x , y \rangle \in f \} \)
word(ss,s)! …【\({\sf F} ( {\sf X} )\)
\(\text{Ap.}\)\(x \in \text{dom!} ( f ) \Longrightarrow \langle x , f ( x ) \rangle \in f\)
\(=\) … =のalias
\({=}.\)\(x \in \text{dom!} ( f ) \Longrightarrow y = f ( x ) \Leftrightarrow \langle x , y \rangle \in f\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(\text{PAp0}\)\(A \subset \text{dom!} ( f ) \Longrightarrow f ( A ) = \{ f ( a ) \mid a \in A \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}\text{Ap}\)\(x \in \text{dom!} ( f ) , f ( x ) \in \text{dom!} ( g ) \Longrightarrow ( g \circ f ) ( x ) = g ( f ( x ) )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(!{\circ}\text{Ap}\)\(x \in \text{dom!} ( f ) , f ( x ) \in \text{dom!} ( g ) \Longrightarrow x \in \text{dom!} ( g \circ f ) , \langle x , g ( f ( x ) ) \rangle \in g \circ f\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)