最初の写像

具体的な写像を作るときには\(\lambda\)計算の記号が便利です。
abbr …【\([ {\sf x} \mid {\sf X} ]\)】≈【\(\{ {\sf z} \mid \exists {\sf x} \, {\sf z} = \langle {\sf x} , {\sf X} \rangle \}\)
abbr …【\([ {\sf x} {\sf A} \mid {\sf X} ]\)】≈【\(\{ \langle {\sf x} , {\sf X} \rangle \mid {\sf x} {\sf A} \}\)
\(f \in \text{mapon} ( X ) \Longrightarrow f = [ x \in X \mid f ( x ) ]\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

一点集合への写像
word(ss,s)! … on  【\({\sf Y} _{ \mid {\sf X} }\)
\(\text{on.}\)\(y _{ \mid X } = X \times \{ y \}\)
\(\text{on..}\)\(y _{ \mid X } = [ x \in X \mid y ]\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(\text{on0}\)\(X \to \{ y \} = \{ y _{ \mid X } \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

互換
word(ss,s) … \(\leftrightharpoons\)  
\({\leftrightharpoons}.\)\(x \leftrightharpoons y = \{ \langle x , y \rangle , \langle y , x \rangle \}\)

入力補助を?

恒等写像

word(s,s)! … id  【\(\text{id} _{ {\sf X} }\)
\(\text{id}.\)\(\text{id} _{ X } = [ x \in X \mid x ]\)
\(\text{id0}\)\(\text{id} _{ X } \in X \stackrel{\rm IS}\to X\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}単\)\(R \subset X \times Y \Longrightarrow \text{id} _{ Y } \circ R = R = R \circ \text{id} _{ X }\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(|\text{id}\)\(R \in \text{Rel} \Longrightarrow R | _{ X } = R \circ \text{id} _{ X }\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

\({\stackrel{\rm I}\to}{.}{.}\)\(X \stackrel{\rm I}\to Y = \{ f \in X \to Y \mid f ^\leftrightarrow \circ f = \text{id} _{ X } \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\stackrel{\rm S}\to}{.}{.}\)\(X \stackrel{\rm S}\to Y = \{ f \in X \to Y \mid f \circ f ^\leftrightarrow = \text{id} _{ Y } \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)