a3

集合の等号としては =s ≅ = を使用します。


集合の有限集合を作るときには sets ≅ set を使用します。
\(\text{sets}_{\tt n}.\)\(\{ X_{1} , \cdots , X_{\tt n} \} = \{ x \mid x = X_{1} \mathbin{\rm o\!r} \cdots \mathbin{\rm o\!r} x = X_{\tt n} \}\)

b1

\(\bigcap.\)\(x \in \bigcap X \Longleftrightarrow \begin{cases} \exists x \, x \in X \Rightarrow \forall y \in X . x \in y \\ \not\exists x \, x \in X \Rightarrow x \in \bigcap X \end{cases}\)\(\,{\triangleleft}\,\)

def …【\(\mathbb{U}_1\)】≃【\(\{ x \mid \not\exists y \, ( x \in y \in x ) \}\)
\(\mathbb{U}_1 = \mathbb{U}_1\)\(\,{\blacktriangleleft}\,\)

b2

\({0.}\)\(x \in 0 \Longleftrightarrow {\perp}\)\(\,{\triangleleft}\,\)
\({\tt n}.\)\(x \in {\tt n} \Longleftrightarrow x = 0 \mathbin{\rm o\!r} x = 1 \mathbin{\rm o\!r} \cdots \mathbin{\rm o\!r} x = {\tt n\,{\text -}\,1}\)\(\,{\triangleleft}\,\)
def …【\(\text{Ind}\)】≃【\(\{ M \mid 0 \in M , \forall m \in M . m \textit{+1} \in M \}\)
\(\text{Ind} = \text{Ind}\)\(\,{\blacktriangleleft}\,\)
\(\mathbb{M}1\)\(\forall n \in \mathbb{M} . n \textit{+1} \in \mathbb{M}\)\(\,{\blacktriangleleft}\,\)
\(\textit{+1}.\)\(x \in n \textit{+1} \Longleftrightarrow x \in n \mathbin{\rm o\!r} x = n\)\(\,{\triangleleft}\,\)
\(\bigcup\mathbb{M}\)\(n \in \mathbb{M} \Longrightarrow n \subset \mathbb{M}\)\(\,{\blacktriangleleft}\,\)
準備 \(M_a.\)\(M_a = \{ n \in \mathbb{M} \mid n \subset \mathbb{M} \}\)

\(\mathbb{M}\)が推移的であることを示します。機械は細い論理も平気で通します!
\({<_\mathbb{M}}0\text{l}\)\(m \in n \in \mathbb{M} \Longrightarrow m \subsetneq n\)\(\,{\blacktriangleleft}\,\)
準備 \(M_b.\)\(M_b = \{ n \in \mathbb{M} \mid \forall m \in n . m \subsetneq n \}\)
\({<_\mathbb{M}}0\text{r}\)\( m , n \in \mathbb{M} , m \subsetneq n \Longrightarrow m \in n\)\(\,{\blacktriangleleft}\,\)
準備 \(M_c.\)\(M_c = \{ n \in \mathbb{M} \mid \forall m \in \mathbb{M} . ( m \subsetneq n \Rightarrow m \in n ) \}\)
\(\mathbb{N}.\)\(n \in \mathbb{N} \Longleftrightarrow 0 \neq n \in \mathbb{M}\)\(\,{\triangleleft}\,\)

b3

\(+_\mathbb{M}0\)\(m \in \mathbb{M} , n \in \mathbb{M} \Longrightarrow m + n \in \mathbb{M}\)\(\,{\blacktriangleleft}\,\)
準備 \(M_p.\)\(M_p = \{ n \in \mathbb{M} \mid \forall m \in \mathbb{M} . ( m + n \in \mathbb{M} ) \}\)
\(*_\mathbb{M}0\)\(m \in \mathbb{M} , n \in \mathbb{M} \Longrightarrow m \cdot n \in \mathbb{M}\)\(\,{\blacktriangleleft}\,\)
準備 \(M_m.\)\(M_m = \{ n \in \mathbb{M} \mid \forall m \in \mathbb{M} . ( m \cdot n \in \mathbb{M} ) \}\)

c2

\({\stackrel{\rm I}\to}.\)\(X \stackrel{\rm I}\to Y = \{ f \in X \to Y \mid \forall y \, ! x \, \langle x , y \rangle \in f \}\)
\({\stackrel{\rm S}\to}.\)\(X \stackrel{\rm S}\to Y = \{ f \in X \to Y \mid \forall y \in Y . \exists x \in X . \langle x , y \rangle \in f \}\)

c3

\(\stackrel{\#}=.\)\(X \stackrel{\#}= Y \Longleftrightarrow \exists f \, f \in X \stackrel{\rm IS}\to Y\)
\(\stackrel{\#}\le.\)\(X \stackrel{\#}\le Y \Longleftrightarrow \exists f \, f \in X \stackrel{\rm I}\to Y\)

d1