1

対も基本的ですが定義は与えられません。\(\langle x,y\rangle=\{x,\{x,y\}\}\) とはしません。
後に、対の集合として写像が作られますが、別種の対が写像として作られます。

対、直積

word(ss,s)! … %  abbr … 【\(\langle {\sf X} , {\sf Y} \rangle\)】≈ % ($X , $Y)
次のものは対の成分を取り出します。
word(s,s) … \(\triangleleft\)  \(\triangleright\)  
\({\triangleleft.}\)\(\triangleleft \langle x , y \rangle = x\)
\({\triangleright.}\)\(\triangleright \langle x , y \rangle = y\)
\(\text{%0}\)\(\langle x_{0} , y_{0} \rangle = \langle x_{1} , y_{1} \rangle \Longleftrightarrow x_{0} = x_{1} , y_{0} = y_{1}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

word(ss,s) … \(\times\)  
\({\times}.\) {%_ == #P%}
対の集合は関係と呼ばれます。特別な関係に写像があります。
word(,c) … \(\text{Rel}\)  
def …【\(\text{Rel}\)】≃【\(\{ R \mid \forall x \in R . x = \langle \triangleleft x , \triangleright x \rangle \}\)

定義域、値域

word(s,s)F … \(\text{dom}\)  \(\text{im}\)  
\(\text{dom.}\)\(\text{dom} ( R ) = \{ x \mid \exists y \, \langle x , y \rangle \in R \}\)
\(\text{im.}\)\(\text{im} ( R ) = \{ y \mid \exists x \, \langle x , y \rangle \in R \}\)
\(\text{Rel} = \{ R \mid R \subset \text{dom} ( R ) \times \text{im} ( R ) \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

定義域の制限や像は写像に対してよく使用されます。
word(ss,s)! … rest  abbr … 【\({\sf R} | _{ {\sf X} }\)】≈ rest ($R , $X)
\(|.\)\(R | _{ X } = \{ \langle x , y \rangle \in R \mid x \in X \}\)
word(ss,s)! … ap_  abbr …【\({\sf R} ( {\sf A} )\)】≈ ap_ ($R , $X)
\(\text{ap_}.\)\(R ( A ) = \{ y \mid \exists a \in A . \langle a , y \rangle \in R \}\)

代入

word(s,s) … \(\text{dom!}\)  
\(\text{dom!}.\)\(\text{dom!} ( f ) = \{ x \mid \exists! y \, \langle x , y \rangle \in f \}\)

=% ≅ =
word(ss,s)! … ap  abbr …【\({\sf F} ( {\sf X} )\)】≈ ap ($F , $X)
\({=}.\)\(x \in \text{dom!} ( f ) \Longrightarrow y = f ( x ) \Leftrightarrow \langle x , y \rangle \in f\)
\(\text{ap0}\)\(x \in \text{dom!} ( f ) \Longrightarrow \langle x , f ( x ) \rangle \in f\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(\text{ap_0}\)\(A \subset \text{dom!} ( f ) \Longrightarrow f ( A ) = \{ f ( a ) \mid a \in A \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

成分の入れ替え

word(s,s) … \(^\leftrightarrow\)  
\(\text{sw.}\)\(\langle x , y \rangle ^\leftrightarrow = \langle y , x \rangle\)
\(\text{sw}巾\)\(\langle x , y \rangle ^\leftrightarrow \, \! ^\leftrightarrow = \langle x , y \rangle\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

word(s,s) … \(^\leftrightarrow\)  
\(\text{sw_.}\)\(^\leftrightarrow \, {\tt ==} \, {^\leftrightarrow}\)
\(\text{sw_0}\)\(R \subset X \times Y \Longrightarrow R ^\leftrightarrow \subset Y \times X\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(\text{sw_}巾\)\(R \in \text{Rel} \Longrightarrow R ^\leftrightarrow \, \! ^\leftrightarrow = R\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

合成

word(ss,s) … \(\circ\)  
\({\circ}.\)\(S \circ R = \{ \langle x , z \rangle \mid \exists y \, ( \langle x , y \rangle \in R , \langle y , z \rangle \in S ) \}\)
\({\circ}\text{Rel}\)\(R \subset X \times Y , S \subset Y \times Z \Longrightarrow S \circ R \subset X \times Z\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}\mathfrak{A} \)\( R , S , T \in \text{Rel} \Longrightarrow ( T \circ S ) \circ R = T \circ ( S \circ R )\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}逆\)\( R , S \in \text{Rel} \Longrightarrow ( R \circ S ) ^\leftrightarrow = S ^\leftrightarrow \circ R ^\leftrightarrow\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}\text{ap}\)\(x \in \text{dom!} ( f ) , f ( x ) \in \text{dom!} ( g ) \Longrightarrow ( g \circ f ) ( x ) = g ( f ( x ) )\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(!{\circ}\text{ap}\)\(x \in \text{dom!} ( f ) , f ( x ) \in \text{dom!} ( g ) \Longrightarrow x \in \text{dom!} ( g \circ f ) , \langle x , g ( f ( x ) ) \rangle \in g \circ f\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

2

写像とは「集合の各元を他の集合の元にそれぞれ対応させるもの」ですが、以下にあるような定義が採用されます。基本的な写像の例も紹介されます。

写像

word(ss,s) … \(\to\)  
\({\to}.\)\(X \to Y = \{ f \subset X \times Y \mid X \subset \text{dom!} ( f ) \}\)
\(f \in \text{dom} ( f ) \to \text{im} ( f ) \Longleftrightarrow f \in \text{Rel} , \text{dom} ( f ) \subset \text{dom!} ( f )\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}{\to}\)\(f \in X \to Y , g \in Y \to Z \Longrightarrow g \circ f \in X \to Z\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(|{\to}\)\(f \in X \to Y \Longrightarrow f | _{ A } \in X \cap A \to Y\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

word(s,c)F … \(\text{mapon} \)  
def …【\(\text{mapon} ( {\sf X} )\)】≃【\(\{ {\sf f} \mid \exists {\sf y} \, {\sf f} \in {\sf X} \to {\sf y} \}\)
\(f \in \text{mapon} ( X ) \Longrightarrow f = \{ \langle x , f ( x ) \rangle \mid x \in X \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(\text{mapon} ( \emptyset ) = \{ \emptyset \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

単射、全射

word(ss,s) … \(\stackrel{\rm I}\to\)  \(\stackrel{\rm S}\to\)  \(\stackrel{\rm IS}\to\)  
\({\stackrel{\rm I}\to}.\)\(X \stackrel{\rm I}\to Y = \{ f \in X \to Y \mid f ^\leftrightarrow \in \text{im} ( f ) \to X \}\)\(\,{\triangleleft}\,\)
\({\stackrel{\rm S}\to}.\)\(X \stackrel{\rm S}\to Y = \{ f \in X \to Y \mid \text{im} ( f ) = Y \}\)\(\,{\triangleleft}\,\)
\({\stackrel{\rm IS}\to}.\)\(X \stackrel{\rm IS}\to Y = ( X \stackrel{\rm I}\to Y ) \cap ( X \stackrel{\rm S}\to Y )\)
\({\stackrel{\rm IS}\to}{.}{.}\)\(X \stackrel{\rm IS}\to Y = \{ f \in X \to Y \mid f ^\leftrightarrow \in Y \to X \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(\text{mapon0}\)\(f \in \text{mapon} ( X ) \Longrightarrow f \in X \stackrel{\rm S}\to \text{im} ( f )\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

\({\circ}{\stackrel{\rm I}\to}\)\(f \in X \stackrel{\rm I}\to Y , g \in Y \stackrel{\rm I}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm I}\to Z\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}{\stackrel{\rm S}\to}\)\(f \in X \stackrel{\rm S}\to Y , g \in Y \stackrel{\rm S}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm S}\to Z\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}{\stackrel{\rm IS}\to}\)\(f \in X \stackrel{\rm IS}\to Y , g \in Y \stackrel{\rm IS}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm IS}\to Z\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

小さい集合への写像

\(X \neq \emptyset \Longrightarrow X \to \emptyset = \emptyset\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

一点集合への写像
\({\stackrel{\rm IS}\to}0\)\(\{ \langle x , y \rangle \} \in \{ x \} \stackrel{\rm IS}\to \{ y \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
word(ss,s)! … on  【\({\sf Y} _{ \mid {\sf X} }\)】≃ on ($X , $Y)
\(\text{on.}\)\(y _{ \mid X } = X \times \{ y \}\)
\(\text{on0}\)\(X \to \{ y \} = \{ y _{ \mid X } \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
onは入力補助を?

互換
word(ss,s) … \(\leftrightharpoons\)  
\({\leftrightharpoons}.\)\(x \leftrightharpoons y = \{ \langle x , y \rangle , \langle y , x \rangle \}\)
\({\leftrightharpoons}0\)\(x \leftrightharpoons y \in \{ x , y \} \stackrel{\rm IS}\to \{ x , y \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

恒等写像

word(s,s)! … id  【\(\text{id} _{ {\sf X} }\)】≃ id ($X)
\(\text{id}.\)\(\text{id} _{ X } = \{ \langle x , x \rangle \mid x \in X \}\)
\(\text{id0}\)\(\text{id} _{ X } \in X \stackrel{\rm IS}\to X\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\circ}単\)\(R \subset X \times Y \Longrightarrow \text{id} _{ Y } \circ R = R = R \circ \text{id} _{ X }\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(|\text{id}\)\(R \in \text{Rel} \Longrightarrow R | _{ X } = R \circ \text{id} _{ X }\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

\({\stackrel{\rm I}\to}{.}{.}\)\(X \stackrel{\rm I}\to Y = \{ f \in X \to Y \mid f ^\leftrightarrow \circ f = \text{id} _{ X } \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\stackrel{\rm S}\to}{.}{.}\)\(X \stackrel{\rm S}\to Y = \{ f \in X \to Y \mid f \circ f ^\leftrightarrow = \text{id} _{ Y } \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

3

基数とかめんどくさいので濃度の定義もされません。「2つの集合の濃度が等しいか?」という事は議論されます。

濃度

word(ss,p) … \(\stackrel{\#}=\)  \(\stackrel{\#}\le\)  \(\stackrel{\#}<\)  
\(\stackrel{\#}=.\)\(X \stackrel{\#}= Y \Longleftrightarrow X \stackrel{\rm IS}\to Y \neq \emptyset\)\(\,{\triangleleft}\,\)
\(\stackrel{\#}\le.\)\(X \stackrel{\#}\le Y \Longleftrightarrow X \stackrel{\rm I}\to Y \neq \emptyset\)\(\,{\triangleleft}\,\)
\(\stackrel{\#}<.\)\(X \stackrel{\#}< Y \Longleftrightarrow X \stackrel{\#}\le Y , X \cancel{\stackrel{\#}=} Y\)

\({\stackrel{\#}=}\text{IT}\)\(\stackrel{\#}= {:}\, \mathfrak{I} \mathfrak{T}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\stackrel{\#}=}対\)\(X \stackrel{\#}= Y \Longrightarrow Y \stackrel{\#}= X\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
=#対 / =#. / map:IS.. < `f in X map Y => f sw_ sw_ =s f` `f in X map Y => f sw_ sw_ =s f` / W. < sw.
\({\stackrel{\#}\le}\text{IT}\)\(\stackrel{\#}\le {:}\, \mathfrak{I} \mathfrak{T}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\stackrel{\#}<}\text{T}\)\(( X \stackrel{\#}< Y \stackrel{\#}\le Z ) \mathbin{\rm o\!r} ( X \stackrel{\#}\le Y \stackrel{\#}< Z ) \Longrightarrow X \stackrel{\#}< Z\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)

濃度の計算

\({\stackrel{\#}=}0\)\(X \stackrel{\#}= 0 \Longleftrightarrow X = \emptyset\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\stackrel{\#}=}1\)\(X \stackrel{\#}= 1 \Longleftrightarrow \exists x \, X = \{ x \}\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\stackrel{\#}=}{\tt n}\) \(\,{\blacktriangleleft}\,\mathbb{W}.{\bf ,}\,\mathbb{M}0\)

メタ化?

濃度の計算

Cantorの定理
\({\stackrel{\#}<}\wp\)\(X \stackrel{\#}< \wp X\)\(\,{\blacktriangleleft}\,\mathbb{W}.{\bf ,}\,\text{Ax_s}\)
\(!{\stackrel{\#}<}\wp\)\(f = [ x \in X \mid \{ x \} ] \Longrightarrow f \in X \stackrel{\rm I}\to ( \wp X )\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(!!{\stackrel{\#}<}\wp\)\(f \in X \to ( \wp X ) , A = \{ x \in X \mid \forall M ( \langle x , M \rangle \in f \Rightarrow x \notin M ) \} \Longrightarrow A \notin \text{im} ( f )\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\(!!!{\stackrel{\#}<}\wp\)\(f = ( X \times ( \wp X ) ) \cap [ x \mid \{ x \} ] \Longrightarrow f \in X \stackrel{\rm I}\to ( \wp X )\)\(\,{\blacktriangleleft}\,\mathbb{W}.\)
\({\stackrel{\#}=}\wp\)\(\wp X \stackrel{\#}= X \to 2\)

全滅