集合となるクラス

word(c,p) … \(\dot\exists\)  
def …【\(\dot\exists {\sf X}\)】≃【\(\exists {\sf x} \, ( {\sf x} = {\sf X} )\)

Russelのパラドクスが「集合でないクラス(固有クラス)」の最初の例を与えます。
word(,c) … \(\text{Nsc}\)  
def …【\(\text{Nsc}\)】≃【\(\{ {\sf x} \mid {\sf x} \notin {\sf x} \} \)
\(\text{nsc0}\)\(\neg \dot\exists \text{Nsc}\)\(\,{\blacktriangleleft}\,\text{O}\)

集合とクラスの共通部分は集合になります(分出公理)。が、word(sc,s)は使用できません。無限個の公理が必要なのは頭の痛い所です。
word(c,p)F … \(\text{ax_s}\)  
def …【\(\text{ax_s} ( {\sf X} )\)】≃【\(\forall {\sf d} \, \dot\exists ( {\sf d} \cap {\sf X} )\)
\(\text{nsc1}\)\(\neg \dot\exists \text{Set}\)\(\,{\blacktriangleleft}\,\text{Ax_s}\)

濃度

Cantorの定理
\({\stackrel{\#}<}\wp\)\(X \stackrel{\#}< \wp X\)\(\,{\blacktriangleleft}\,\mathbb{D}.{\bf ,}\,\text{Ax_s}\)
\(!{\stackrel{\#}<}\wp\)\(f = [ x \in X \mid \{ x \} ] \Longrightarrow f \in X \stackrel{\rm I}\to ( \wp X )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(!!{\stackrel{\#}<}\wp\)\(f \in X \to ( \wp X ) , A = \{ x \in X \mid \forall M ( \langle x , M \rangle \in f \Rightarrow x \notin M ) \} \Longrightarrow A \notin \text{im} ( f )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(!!!{\stackrel{\#}<}\wp\)\(f = ( X \times ( \wp X ) ) \cap [ x \mid \{ x \} ] \Longrightarrow f \in X \stackrel{\rm I}\to ( \wp X )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\stackrel{\#}=}\wp\)\(\wp X \stackrel{\#}= X \to 2\)