写像

word(ss,s) … \(\to\)  
\({\to}.\)\(X \to Y = \{ f \subset X \times Y \mid X \subset \text{dom!} ( f ) \}\)
word(s,c)F … \(\text{Mapon}\)  
def …【\(\text{Mapon} ( {\sf X} )\)】≃【\(\{ {\sf f} \mid \exists {\sf y} \, {\sf f} \in {\sf X} \to {\sf y} \} \)
\(\text{Mapon}\emptyset\)\(\text{Mapon} ( \emptyset ) = \{ \emptyset \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(\text{map1}\)\(X \neq \emptyset \Longrightarrow X \to \emptyset = \emptyset\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

\({\circ}{\to}\)\(f \in X \to Y , g \in Y \to Z \Longrightarrow g \circ f \in X \to Z\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(|{\to}\)\(f \in X \to Y , A \subset X \Longrightarrow f | _{ A } \in A \to Y\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)


mapはoldではtoだった。チェック 'X to Y = X map Y' / d. < %0

単射、全射

word(ss,s) … \(\stackrel{\rm I}\to\)  \(\stackrel{\rm S}\to\)  \(\stackrel{\rm IS}\to\)  
\({\stackrel{\rm I}\to}.\)\(X \stackrel{\rm I}\to Y = \{ f \in X \to Y \mid \forall y \, ! x \, \langle x , y \rangle \in f \}\)
\({\stackrel{\rm S}\to}.\)\(X \stackrel{\rm S}\to Y = \{ f \in X \to Y \mid \text{im} ( f ) = Y \}\)
\({\stackrel{\rm IS}\to}.\)\(X \stackrel{\rm IS}\to Y = ( X \stackrel{\rm I}\to Y ) \cap ( X \stackrel{\rm S}\to Y )\)
\({\stackrel{\rm IS}\to}{.}{.}\)\(X \stackrel{\rm IS}\to Y = \{ f \in X \to Y \mid f ^\leftrightarrow \in Y \to X \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(\text{Mapon1}\)\(f \in \text{mapon} ( X ) \Longrightarrow f \in X \stackrel{\rm S}\to \text{im} ( f )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

\({\circ}{\stackrel{\rm I}\to}\)\(f \in X \stackrel{\rm I}\to Y , g \in Y \stackrel{\rm I}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm I}\to Z\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}{\stackrel{\rm S}\to}\)\(f \in X \stackrel{\rm S}\to Y , g \in Y \stackrel{\rm S}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm S}\to Z\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}{\stackrel{\rm IS}\to}\)\(f \in X \stackrel{\rm IS}\to Y , g \in Y \stackrel{\rm IS}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm IS}\to Z\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

最初の写像

具体的な写像を作るときには\(\lambda\)計算の記号が便利ですが、クラスであることに注意です。
abbr …【\([ {\sf x} \mid {\sf X} ]\)】≈【\(\{ {\sf z} \mid \exists {\sf x} \, {\sf z} = \langle {\sf x} , {\sf X} \rangle \} \)
abbr …【\([ {\sf x} {\sf A} \mid {\sf X} ]\)】≈【\(\{ \langle {\sf x} , {\sf X} \rangle \mid {\sf x} {\sf A} \}\)
\(\text{Mapon0}\)\(f \in \text{Mapon} ( X ) \Longrightarrow f = [ x \in X \mid f ( x ) ]\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

一点集合への写像
word(ss,s)! …【\({\sf Y} _{ \mid {\sf X} }\)
\(\text{on.}\)\(y _{ \mid X } = X \times \{ y \}\)
\(\text{on0}\)\(y _{ \mid X } = [ x \in X \mid y ]\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(\text{on1}\)\(X \to \{ y \} = \{ y _{ \mid X } \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

互換
word(ss,s) … \(\leftrightharpoons\)  
\({\leftrightharpoons}.\)\(x \leftrightharpoons y = \{ \langle x , y \rangle , \langle y , x \rangle \}\)

入力補助を?

恒等写像

word(s,s)! …【\(\text{id} _{ {\sf X} }\)
\(\text{id}.\)\(\text{id} _{ X } = [ x \in X \mid x ]\)
\(\text{id0}\)\(\text{id} _{ X } \in X \stackrel{\rm IS}\to X\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}単\)\(R \subset X \times Y \Longrightarrow \text{id} _{ Y } \circ R = R = R \circ \text{id} _{ X }\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\(|\text{id}\)\(R \in \text{Rel} \Longrightarrow R | _{ X } = R \circ \text{id} _{ X }\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

\({\stackrel{\rm I}\to}{.}{.}\)\(X \stackrel{\rm I}\to Y = \{ f \in X \to Y \mid f ^\leftrightarrow \circ f = \text{id} _{ X } \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\stackrel{\rm S}\to}{.}{.}\)\(X \stackrel{\rm S}\to Y = \{ f \in X \to Y \mid f \circ f ^\leftrightarrow = \text{id} _{ Y } \}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

to:I.. / d. < %0 , sw. と to