写像

word(,c) … \(\text{Map}\)  
def …【\(\text{Map}\)】≃【\(\{ f \in \text{Rel} \mid \forall x \, ! y \, \langle x , y \rangle \in f \}\)
word(s,c)F … \(\text{mapon} \)  
def …【\(\text{mapon} ( {\sf X} )\)】≃【\(\{ {\sf f} \in \text{Map} \mid \text{dom} ( {\sf f} ) = {\sf X} \}\)
\(\text{mapon0}\)\(\text{mapon} ( \emptyset ) = \{ \emptyset \}\)\({\bf /}\text{set}_1.{\bf /}\emptyset{.}{.}{\bf /}\text{dom.}\) ◀ O

word(ss,s) … \(\to\)  
\({\to}.\)\(X \to Y = \{ f \in \text{mapon} ( X ) \mid \text{rng} ( f ) \subset Y \}\)
\(\text{Map0}\)\(f \in \text{Map} \Longrightarrow f \in \text{dom} ( f ) \to \text{rng} ( f )\)\({\bf /}{\to}.{\bf /}{\subset.}\) ◀ O
\({\circ}\text{Map}\)\(f \in X \to Y , g \in Y \to Z \Longrightarrow g \circ f \in X \to Z\)\({\bf /}{\to}.{\bf /}^{1112}{=.}{\bf /}^{1212}{=.}{\bf /}^{212}{=.}{\bf /}{\subset.}{\bf /}\mathbb{S}.\) ◀ \(\text{%0}\)

写像への代入、\(\lambda\)記法

word(ss,s)! …【\({\sf F} ( {\sf X} )\)
\(\text{ap0}\)\(f \in \text{mapon} ( X ) , x \in X \Longrightarrow \langle x , f ( x ) \rangle \in f\)
\(\text{ap1}\)\(f \in X \to Y , x \in X \Longrightarrow f ( x ) \in Y\)\({\bf /}{\to}.{\bf /}{\subset.}{\bf /}\text{rng.}\) ◀ \(\text{ap0}\)
\({\circ}\text{ap}\)\(f \in X \to Y , g \in Y \to Z , x \in X \Longrightarrow ( g \circ f ) ( x ) = g ( f ( x ) )\)\(\) ◀ \({\circ}\text{Map}\,{\bf ,}\,{\to}.\,{\bf ,}\,\text{ap0}\,{\bf ,}\,!{\circ}\text{ap}\)
 \(!{\circ}\text{ap}\)\(f \in X \to Y , g \in Y \to Z , x \in X \Longrightarrow \langle x , g ( f ( x ) ) \rangle \in g \circ f\)\({\bf /}{\to}.{\bf /}^{11112}{=.}{\bf /}^{11212}{=.}{\bf /}{\subset.}{\bf /}\mathbb{S}.\) ◀ \(\text{ap0}{\bf /}^{112}{=.}{\bf /}\text{dom.}\)

写像を作るときには\(\lambda\)計算の記法が便利です。ただしクラスであることに注意。
abbr …【\([ {\sf x} {\sf A} \mid {\sf X} ]\)】≈【\(\{ \langle {\sf x} , {\sf X} \rangle \mid {\sf x} {\sf A} \}\)
\(\text{Map1}\)\(f \in \text{mapon} ( X ) \Longrightarrow f = [ x \in X \mid f ( x ) ]\)\({\bf /}^{12}{=.}{\bf /}\text{dom.}\) ◀ \(\text{ap0}{\bf /}^{112}{=.}{\bf /}\text{dom.}\)

一点集合への写像

word(ss,s)! …【\({\sf Y} _{ \mid {\sf X} }\)
def …【\({\sf Y} _{ \mid {\sf X} }\)】≃【\({\sf X} \times \{ {\sf Y} \}\)
\(\text{on0}\)\(y _{ \mid X } = [ x \in X \mid y ]\)\({\bf /}\mathbb{S}.\) ◀ O
\(\text{on1}\)\(X \to \{ y \} = \{ y _{ \mid X } \}\)\({\bf /}{=.}{\bf /}\mathbb{S}.{\bf /}^{2112}{=.}{\bf /}^{22}{=.}{\bf /}{\subset.}{\bf /}\mathbb{S}.\) ◀ \(\text{%0}\)

単射、全射

word(ss,s) … \(\stackrel{\rm I}\to\)  \(\stackrel{\rm S}\to\)  \(\stackrel{\rm IS}\to\)  
\({\stackrel{\rm I}\to}.\)\(X \stackrel{\rm I}\to Y = \{ f \in X \to Y \mid \forall x , y \in X . ( f ( x ) = f ( y ) \Rightarrow x = y ) \}\)
\({\stackrel{\rm S}\to}.\)\(X \stackrel{\rm S}\to Y = \{ f \in X \to Y \mid \text{rng} ( f ) = Y \}\)
\({\stackrel{\rm IS}\to}.\)\(X \stackrel{\rm IS}\to Y = ( X \stackrel{\rm I}\to Y ) \cap ( X \stackrel{\rm S}\to Y )\)

\({\circ}\text{MapI}\)\(f \in X \stackrel{\rm I}\to Y , g \in Y \stackrel{\rm I}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm I}\to Z\)\({\bf /}{\stackrel{\rm I}\to}.\rfloor\) ◀ \({\circ}\text{Map}\)
\({\circ}\text{MapS}\)\(f \in X \stackrel{\rm S}\to Y , g \in Y \stackrel{\rm S}\to Z \Longrightarrow g \circ f \in X \stackrel{\rm S}\to Z\)

compMapI / to.I. Rr < compMap , ap1 , compap

恒等写像

恒等写像
word(s,s)! …【\(\text{id} _{ {\sf X} }\)
\(\text{id}.\)\(\text{id} _{ X } = [ x \in X \mid x ]\)
\(\text{id0}\)\(\text{id} _{ X } \in X \stackrel{\rm IS}\to X\)
\(|\text{id}\)\(\text{Rel} ( R ) \Longrightarrow R | _{ X } = R \circ \text{id} _{ X }\)

/ to.IS. は未実装