word(ss,s)! …【\(\langle {\sf X} , {\sf Y} \rangle\)
対の定義はされません。次のものは対の成分を取り出します。
word(s,s) … \(\triangleleft\)  \(\triangleright\)  
\({\triangleleft.}\)\(\triangleleft \langle x , y \rangle = x\)
\({\triangleright.}\)\(\triangleright \langle x , y \rangle = y\)
\(\text{%0}\)\(\langle x_{0} , y_{0} \rangle = \langle x_{1} , y_{1} \rangle \Longleftrightarrow x_{0} = x_{1} , y_{0} = y_{1}\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

直積

word(cc,c) … \(\times\)  
def …【\({\sf X} \times {\sf Y}\)】≃【\(\{ \langle {\sf x} , {\sf y} \rangle \mid {\sf x} \in {\sf X} , {\sf y} \in {\sf Y} \}\)
\(\text{Set}^2\)\(\widehat{\times} \text{Set} = \{ x \mid x = \langle \triangleleft x , \triangleright x \rangle \} \)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
word(ss,s) … \(\times\)  
\(\times.\)\(X \times Y = X \times Y\)

対の集合は関係と呼ばれます。
word(,c) … \(\text{Rel}\)  
def …【\(\text{Rel}\)】≃【\(\{ R \mid R \subset \widehat{\times} \text{Set} \} \)

定義域、値域

word(c,c)F … \(\text{dom}\)  \(\text{im}\)  
def …【\(\text{dom} ( {\sf R} )\)】≃【\(\{ {\sf x} \mid \exists {\sf y} \, \langle {\sf x} , {\sf y} \rangle \in {\sf R} \} \)
def …【\(\text{im} ( {\sf R} )\)】≃【\(\{ {\sf y} \mid \exists {\sf x} \, \langle {\sf x} , {\sf y} \rangle \in {\sf R} \} \)

word(s,s)F … \(\text{dom}\)  \(\text{im}\)  
\(\text{dom.}\)\(\text{dom} ( R ) = \text{dom} ( R )\)
\(\text{im.}\)\(\text{im} ( R ) = \text{im} ( R )\)
\(\text{Rel0}\)\(R \in \text{Rel} \Longrightarrow R \subset \text{dom} ( R ) \times \text{im} ( R )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

定義域の制限、像

word(cc,c)! …【\({\sf R} | _{ {\sf X} }\)
def …【\({\sf R} | _{ {\sf X} }\)】≃【\(\{ \langle {\sf x} , {\sf y} \rangle \in {\sf R} \mid {\sf x} \in {\sf X} \}\)
word(ss,s)! …【\({\sf R} | _{ {\sf X} }\)
\(|.\)\(R | _{ X } = R | _{ X }\)

word(ss,s)! …【\({\sf R} ( {\sf A} )\)
\(\text{Pap}.\)\(R ( A ) = \{ y \mid \exists a \in A . \langle a , y \rangle \in R \} \)

成分の入れ替え

word(s,s) … \(^\leftrightarrow\)  
\(\text{sw.}\)\(\langle x , y \rangle ^\leftrightarrow = \langle y , x \rangle\)
\(\text{sw}巾\)\(\langle x , y \rangle ^\leftrightarrow \, \! ^\leftrightarrow = \langle x , y \rangle\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

word(c,c) … \(^\leftrightarrow\)  
def …【\({\sf R} ^\leftrightarrow\)】≃【\(\{ {\sf p} ^\leftrightarrow \mid {\sf p} \in {\sf R} \}\)
word(s,s) … \(^\leftrightarrow\)  
\(\text{Psw.}\)\(R ^\leftrightarrow = R ^\leftrightarrow\)
\(\text{Psw}巾\)\(R \in \text{Rel} \Longrightarrow R ^\leftrightarrow \, \! ^\leftrightarrow = R\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)

合成

word(cc,c) … \(\circ\)  
def …【\({\sf S} \circ {\sf R}\)】≃【\(\{ \langle {\sf x} , {\sf z} \rangle \mid \exists {\sf y} \, ( \langle {\sf x} , {\sf y} \rangle \in {\sf R} , \langle {\sf y} , {\sf z} \rangle \in {\sf S} ) \}\)
word(ss,s) … \(\circ\)  
\({\circ}.\)\(S \circ R = S \circ R\)
\({\circ}\text{Rel}\)\(R \subset X \times Y , S \subset Y \times Z \Longrightarrow S \circ R \subset X \times Z\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}結 \)\(R , S , T \in \text{Rel} \Longrightarrow ( T \circ S ) \circ R = T \circ ( S \circ R )\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)
\({\circ}逆\)\(R , S \in \text{Rel} \Longrightarrow ( R \circ S ) ^\leftrightarrow = S ^\leftrightarrow \circ R ^\leftrightarrow\)\(\,{\blacktriangleleft}\,\mathbb{D}.\)