word(ss,s)! …【\(\langle {\sf X} , {\sf Y} \rangle\)
対の定義はされません。次のものは対の成分を取り出します。
word(s,s) … \(\triangleleft\)  \(\triangleright\)  
\({\triangleleft.}\)\(\triangleleft \langle x , y \rangle = x\)
\({\triangleright.}\)\(\triangleright \langle x , y \rangle = y\)
\(\text{%0}\)\(\langle x_{0} , y_{0} \rangle = \langle x_{1} , y_{1} \rangle \Longleftrightarrow x_{0} = x_{1} , y_{0} = y_{1}\)\(\) ◀ \({\triangleleft.}\,{\bf ,}\,{\triangleright.}\)

直積

word(cc,c) … \(\times\)  
def …【\({\sf C} \times {\sf D}\)】≃【\(\{ \langle {\sf x} , {\sf y} \rangle \mid {\sf x} \in {\sf C} , {\sf y} \in {\sf D} \}\)
\(\text{Set}^2\)\(\widehat{\times} \text{Set} = \{ x \mid x = \langle \triangleleft x , \triangleright x \rangle \} \)\(\) ◀ \({\triangleleft.}\,{\bf ,}\,{\triangleright.}\)
word(ss,s) … \(\times\)  
\(\times.\)\(X \times Y = X \times Y\)

対の集合は関係と呼ばれます。
word(,c) … \(\text{Rel}\)  
def …【\(\text{Rel}\)】≃【\(\{ R \mid R \subset \widehat{\times} \text{Set} \} \)

定義域、値域

word(c,c)F … \(\text{dom}\)  \(\text{rng}\)  
def …【\(\text{dom} ( {\sf R} )\)】≃【\(\{ {\sf x} \mid \exists {\sf y} \, \langle {\sf x} , {\sf y} \rangle \in {\sf R} \} \)
def …【\(\text{rng} ( {\sf R} )\)】≃【\(\{ {\sf y} \mid \exists {\sf x} \, \langle {\sf x} , {\sf y} \rangle \in {\sf R} \} \)

word(s,s)F … \(\text{dom}\)  \(\text{rng}\)  
\(\text{dom.}\)\(\text{dom} ( R ) = \text{dom} ( R )\)
\(\text{rng.}\)\(\text{rng} ( R ) = \text{rng} ( R )\)
\(\text{Rel0}\)\(R \in \text{Rel} \Longrightarrow R \subset \text{dom} ( R ) \times \text{rng} ( R )\)\({\bf /}{\subset.}{\bf /}\mathbb{S}.\) ◀ O

定義域の制限、像

word(cc,c)! …【\({\sf R} | _{ {\sf C} }\)
def …【\({\sf R} | _{ {\sf C} }\)】≃【\(\{ \langle {\sf x} , {\sf y} \rangle \in {\sf R} \mid {\sf x} \in {\sf C} \}\)
word(ss,s)! …【\({\sf R} | _{ {\sf X} }\)
\(|.\)\({\sf R} | _{ {\sf X} } = {\sf R} | _{ {\sf X} }\)

word(ss,s)! …【\({\sf F} ( {\sf A} )\)

成分の入れ替え

word(s,s) … \(^\leftrightarrow\)  
\(\text{sw.}\)\(\langle x , y \rangle ^\leftrightarrow = \langle y , x \rangle\)

word(c,c) … \(^\leftrightarrow\)  
def …【\({\sf R} ^\leftrightarrow\)】≃【\(\{ {\sf p} ^\leftrightarrow \mid {\sf p} \in {\sf R} \}\)
word(s,s) … \(^\leftrightarrow\)  
\(\text{Psw.}\)\(R ^\leftrightarrow = R ^\leftrightarrow\)

合成

word(cc,c) … \(\circ\)  
def …【\({\sf S} \circ {\sf R}\)】≃【\(\{ \langle {\sf x} , {\sf z} \rangle \mid \exists {\sf y} \, ( \langle {\sf x} , {\sf y} \rangle \in {\sf R} , \langle {\sf y} , {\sf z} \rangle \in {\sf S} ) \}\)
word(ss,s) … \(\circ\)  
\({\circ}.\)\(S \circ R = S \circ R\)
\({\circ}\text{Rel}\)\(R \subset X \times Y , S \subset Y \times Z \Longrightarrow S \circ R \subset X \times Z\)\({\bf /}{\subset.}{\bf /}\mathbb{S}.\) ◀ \(\text{%0}\)
\({\circ}結 \)\(R , S , T \in \text{Rel} \Longrightarrow ( T \circ S ) \circ R = T \circ ( S \circ R )\)\({\bf /}^{2}{=.}{\bf /}\mathbb{S}.\) ◀ \(\text{%0}\)
\({\circ}逆\)\(R , S \in \text{Rel} \Longrightarrow ( R \circ S ) ^\leftrightarrow = S ^\leftrightarrow \circ R ^\leftrightarrow\)\({\bf /}^{2}{=.}{\bf /}\mathbb{S}.\) ◀ \(\text{sw.}\)